3.258 \(\int x^5 (d+e x)^3 (d^2-e^2 x^2)^p \, dx\)

Optimal. Leaf size=222 \[ \frac{2 d^2 e (3 p+17) x^7 \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{7}{2},-p;\frac{9}{2};\frac{e^2 x^2}{d^2}\right )}{7 (2 p+9)}-\frac{e x^7 \left (d^2-e^2 x^2\right )^{p+1}}{2 p+9}-\frac{2 d^7 \left (d^2-e^2 x^2\right )^{p+1}}{e^6 (p+1)}+\frac{11 d^5 \left (d^2-e^2 x^2\right )^{p+2}}{2 e^6 (p+2)}-\frac{5 d^3 \left (d^2-e^2 x^2\right )^{p+3}}{e^6 (p+3)}+\frac{3 d \left (d^2-e^2 x^2\right )^{p+4}}{2 e^6 (p+4)} \]

[Out]

(-2*d^7*(d^2 - e^2*x^2)^(1 + p))/(e^6*(1 + p)) - (e*x^7*(d^2 - e^2*x^2)^(1 + p))/(9 + 2*p) + (11*d^5*(d^2 - e^
2*x^2)^(2 + p))/(2*e^6*(2 + p)) - (5*d^3*(d^2 - e^2*x^2)^(3 + p))/(e^6*(3 + p)) + (3*d*(d^2 - e^2*x^2)^(4 + p)
)/(2*e^6*(4 + p)) + (2*d^2*e*(17 + 3*p)*x^7*(d^2 - e^2*x^2)^p*Hypergeometric2F1[7/2, -p, 9/2, (e^2*x^2)/d^2])/
(7*(9 + 2*p)*(1 - (e^2*x^2)/d^2)^p)

________________________________________________________________________________________

Rubi [A]  time = 0.191047, antiderivative size = 222, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {1652, 446, 77, 459, 365, 364} \[ \frac{2 d^2 e (3 p+17) x^7 \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{7}{2},-p;\frac{9}{2};\frac{e^2 x^2}{d^2}\right )}{7 (2 p+9)}-\frac{e x^7 \left (d^2-e^2 x^2\right )^{p+1}}{2 p+9}-\frac{2 d^7 \left (d^2-e^2 x^2\right )^{p+1}}{e^6 (p+1)}+\frac{11 d^5 \left (d^2-e^2 x^2\right )^{p+2}}{2 e^6 (p+2)}-\frac{5 d^3 \left (d^2-e^2 x^2\right )^{p+3}}{e^6 (p+3)}+\frac{3 d \left (d^2-e^2 x^2\right )^{p+4}}{2 e^6 (p+4)} \]

Antiderivative was successfully verified.

[In]

Int[x^5*(d + e*x)^3*(d^2 - e^2*x^2)^p,x]

[Out]

(-2*d^7*(d^2 - e^2*x^2)^(1 + p))/(e^6*(1 + p)) - (e*x^7*(d^2 - e^2*x^2)^(1 + p))/(9 + 2*p) + (11*d^5*(d^2 - e^
2*x^2)^(2 + p))/(2*e^6*(2 + p)) - (5*d^3*(d^2 - e^2*x^2)^(3 + p))/(e^6*(3 + p)) + (3*d*(d^2 - e^2*x^2)^(4 + p)
)/(2*e^6*(4 + p)) + (2*d^2*e*(17 + 3*p)*x^7*(d^2 - e^2*x^2)^p*Hypergeometric2F1[7/2, -p, 9/2, (e^2*x^2)/d^2])/
(7*(9 + 2*p)*(1 - (e^2*x^2)/d^2)^p)

Rule 1652

Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[x^m*Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2)^p, x] + Int[x^(m + 1)*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2)^p, x]] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2] && IGtQ[m, -2] &&  !
IntegerQ[2*p]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 459

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(b*e*(m + n*(p + 1) + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int x^5 (d+e x)^3 \left (d^2-e^2 x^2\right )^p \, dx &=\int x^5 \left (d^2-e^2 x^2\right )^p \left (d^3+3 d e^2 x^2\right ) \, dx+\int x^6 \left (d^2-e^2 x^2\right )^p \left (3 d^2 e+e^3 x^2\right ) \, dx\\ &=-\frac{e x^7 \left (d^2-e^2 x^2\right )^{1+p}}{9+2 p}+\frac{1}{2} \operatorname{Subst}\left (\int x^2 \left (d^2-e^2 x\right )^p \left (d^3+3 d e^2 x\right ) \, dx,x,x^2\right )+\frac{\left (2 d^2 e (17+3 p)\right ) \int x^6 \left (d^2-e^2 x^2\right )^p \, dx}{9+2 p}\\ &=-\frac{e x^7 \left (d^2-e^2 x^2\right )^{1+p}}{9+2 p}+\frac{1}{2} \operatorname{Subst}\left (\int \left (\frac{4 d^7 \left (d^2-e^2 x\right )^p}{e^4}-\frac{11 d^5 \left (d^2-e^2 x\right )^{1+p}}{e^4}+\frac{10 d^3 \left (d^2-e^2 x\right )^{2+p}}{e^4}-\frac{3 d \left (d^2-e^2 x\right )^{3+p}}{e^4}\right ) \, dx,x,x^2\right )+\frac{\left (2 d^2 e (17+3 p) \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p}\right ) \int x^6 \left (1-\frac{e^2 x^2}{d^2}\right )^p \, dx}{9+2 p}\\ &=-\frac{2 d^7 \left (d^2-e^2 x^2\right )^{1+p}}{e^6 (1+p)}-\frac{e x^7 \left (d^2-e^2 x^2\right )^{1+p}}{9+2 p}+\frac{11 d^5 \left (d^2-e^2 x^2\right )^{2+p}}{2 e^6 (2+p)}-\frac{5 d^3 \left (d^2-e^2 x^2\right )^{3+p}}{e^6 (3+p)}+\frac{3 d \left (d^2-e^2 x^2\right )^{4+p}}{2 e^6 (4+p)}+\frac{2 d^2 e (17+3 p) x^7 \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{7}{2},-p;\frac{9}{2};\frac{e^2 x^2}{d^2}\right )}{7 (9+2 p)}\\ \end{align*}

Mathematica [A]  time = 0.268009, size = 205, normalized size = 0.92 \[ \frac{\left (d^2-e^2 x^2\right )^p \left (54 d^2 e^7 x^7 \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{7}{2},-p;\frac{9}{2};\frac{e^2 x^2}{d^2}\right )+14 e^9 x^9 \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{9}{2},-p;\frac{11}{2};\frac{e^2 x^2}{d^2}\right )+\frac{189 d \left (d^2-e^2 x^2\right )^4}{p+4}-\frac{630 \left (d^3-d e^2 x^2\right )^3}{p+3}+\frac{693 d^5 \left (d^2-e^2 x^2\right )^2}{p+2}-\frac{252 d^7 \left (d^2-e^2 x^2\right )}{p+1}\right )}{126 e^6} \]

Antiderivative was successfully verified.

[In]

Integrate[x^5*(d + e*x)^3*(d^2 - e^2*x^2)^p,x]

[Out]

((d^2 - e^2*x^2)^p*((-252*d^7*(d^2 - e^2*x^2))/(1 + p) + (693*d^5*(d^2 - e^2*x^2)^2)/(2 + p) + (189*d*(d^2 - e
^2*x^2)^4)/(4 + p) - (630*(d^3 - d*e^2*x^2)^3)/(3 + p) + (54*d^2*e^7*x^7*Hypergeometric2F1[7/2, -p, 9/2, (e^2*
x^2)/d^2])/(1 - (e^2*x^2)/d^2)^p + (14*e^9*x^9*Hypergeometric2F1[9/2, -p, 11/2, (e^2*x^2)/d^2])/(1 - (e^2*x^2)
/d^2)^p))/(126*e^6)

________________________________________________________________________________________

Maple [F]  time = 0.587, size = 0, normalized size = 0. \begin{align*} \int{x}^{5} \left ( ex+d \right ) ^{3} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{p}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5*(e*x+d)^3*(-e^2*x^2+d^2)^p,x)

[Out]

int(x^5*(e*x+d)^3*(-e^2*x^2+d^2)^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{{\left ({\left (p^{2} + 3 \, p + 2\right )} e^{6} x^{6} -{\left (p^{2} + p\right )} d^{2} e^{4} x^{4} - 2 \, d^{4} e^{2} p x^{2} - 2 \, d^{6}\right )}{\left (-e^{2} x^{2} + d^{2}\right )}^{p} d^{3}}{2 \,{\left (p^{3} + 6 \, p^{2} + 11 \, p + 6\right )} e^{6}} + \int{\left (e^{3} x^{8} + 3 \, d e^{2} x^{7} + 3 \, d^{2} e x^{6}\right )} e^{\left (p \log \left (e x + d\right ) + p \log \left (-e x + d\right )\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(e*x+d)^3*(-e^2*x^2+d^2)^p,x, algorithm="maxima")

[Out]

1/2*((p^2 + 3*p + 2)*e^6*x^6 - (p^2 + p)*d^2*e^4*x^4 - 2*d^4*e^2*p*x^2 - 2*d^6)*(-e^2*x^2 + d^2)^p*d^3/((p^3 +
 6*p^2 + 11*p + 6)*e^6) + integrate((e^3*x^8 + 3*d*e^2*x^7 + 3*d^2*e*x^6)*e^(p*log(e*x + d) + p*log(-e*x + d))
, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (e^{3} x^{8} + 3 \, d e^{2} x^{7} + 3 \, d^{2} e x^{6} + d^{3} x^{5}\right )}{\left (-e^{2} x^{2} + d^{2}\right )}^{p}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(e*x+d)^3*(-e^2*x^2+d^2)^p,x, algorithm="fricas")

[Out]

integral((e^3*x^8 + 3*d*e^2*x^7 + 3*d^2*e*x^6 + d^3*x^5)*(-e^2*x^2 + d^2)^p, x)

________________________________________________________________________________________

Sympy [B]  time = 19.1311, size = 2958, normalized size = 13.32 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5*(e*x+d)**3*(-e**2*x**2+d**2)**p,x)

[Out]

d**3*Piecewise((x**6*(d**2)**p/6, Eq(e, 0)), (-2*d**4*log(-d/e + x)/(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e**10*
x**4) - 2*d**4*log(d/e + x)/(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e**10*x**4) - d**4/(4*d**4*e**6 - 8*d**2*e**8*
x**2 + 4*e**10*x**4) + 4*d**2*e**2*x**2*log(-d/e + x)/(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e**10*x**4) + 4*d**2
*e**2*x**2*log(d/e + x)/(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e**10*x**4) - 2*e**4*x**4*log(-d/e + x)/(4*d**4*e*
*6 - 8*d**2*e**8*x**2 + 4*e**10*x**4) - 2*e**4*x**4*log(d/e + x)/(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e**10*x**
4) + 2*e**4*x**4/(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e**10*x**4), Eq(p, -3)), (-2*d**4*log(-d/e + x)/(-2*d**2*
e**6 + 2*e**8*x**2) - 2*d**4*log(d/e + x)/(-2*d**2*e**6 + 2*e**8*x**2) - 2*d**4/(-2*d**2*e**6 + 2*e**8*x**2) +
 2*d**2*e**2*x**2*log(-d/e + x)/(-2*d**2*e**6 + 2*e**8*x**2) + 2*d**2*e**2*x**2*log(d/e + x)/(-2*d**2*e**6 + 2
*e**8*x**2) + e**4*x**4/(-2*d**2*e**6 + 2*e**8*x**2), Eq(p, -2)), (-d**4*log(-d/e + x)/(2*e**6) - d**4*log(d/e
 + x)/(2*e**6) - d**2*x**2/(2*e**4) - x**4/(4*e**2), Eq(p, -1)), (-2*d**6*(d**2 - e**2*x**2)**p/(2*e**6*p**3 +
 12*e**6*p**2 + 22*e**6*p + 12*e**6) - 2*d**4*e**2*p*x**2*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12*e**6*p**2 +
22*e**6*p + 12*e**6) - d**2*e**4*p**2*x**4*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12*e**6*p**2 + 22*e**6*p + 12*
e**6) - d**2*e**4*p*x**4*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12*e**6*p**2 + 22*e**6*p + 12*e**6) + e**6*p**2*
x**6*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12*e**6*p**2 + 22*e**6*p + 12*e**6) + 3*e**6*p*x**6*(d**2 - e**2*x**
2)**p/(2*e**6*p**3 + 12*e**6*p**2 + 22*e**6*p + 12*e**6) + 2*e**6*x**6*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12
*e**6*p**2 + 22*e**6*p + 12*e**6), True)) + 3*d**2*d**(2*p)*e*x**7*hyper((7/2, -p), (9/2,), e**2*x**2*exp_pola
r(2*I*pi)/d**2)/7 + 3*d*e**2*Piecewise((x**8*(d**2)**p/8, Eq(e, 0)), (-6*d**6*log(-d/e + x)/(-12*d**6*e**8 + 3
6*d**4*e**10*x**2 - 36*d**2*e**12*x**4 + 12*e**14*x**6) - 6*d**6*log(d/e + x)/(-12*d**6*e**8 + 36*d**4*e**10*x
**2 - 36*d**2*e**12*x**4 + 12*e**14*x**6) - 2*d**6/(-12*d**6*e**8 + 36*d**4*e**10*x**2 - 36*d**2*e**12*x**4 +
12*e**14*x**6) + 18*d**4*e**2*x**2*log(-d/e + x)/(-12*d**6*e**8 + 36*d**4*e**10*x**2 - 36*d**2*e**12*x**4 + 12
*e**14*x**6) + 18*d**4*e**2*x**2*log(d/e + x)/(-12*d**6*e**8 + 36*d**4*e**10*x**2 - 36*d**2*e**12*x**4 + 12*e*
*14*x**6) - 18*d**2*e**4*x**4*log(-d/e + x)/(-12*d**6*e**8 + 36*d**4*e**10*x**2 - 36*d**2*e**12*x**4 + 12*e**1
4*x**6) - 18*d**2*e**4*x**4*log(d/e + x)/(-12*d**6*e**8 + 36*d**4*e**10*x**2 - 36*d**2*e**12*x**4 + 12*e**14*x
**6) + 9*d**2*e**4*x**4/(-12*d**6*e**8 + 36*d**4*e**10*x**2 - 36*d**2*e**12*x**4 + 12*e**14*x**6) + 6*e**6*x**
6*log(-d/e + x)/(-12*d**6*e**8 + 36*d**4*e**10*x**2 - 36*d**2*e**12*x**4 + 12*e**14*x**6) + 6*e**6*x**6*log(d/
e + x)/(-12*d**6*e**8 + 36*d**4*e**10*x**2 - 36*d**2*e**12*x**4 + 12*e**14*x**6) - 9*e**6*x**6/(-12*d**6*e**8
+ 36*d**4*e**10*x**2 - 36*d**2*e**12*x**4 + 12*e**14*x**6), Eq(p, -4)), (-6*d**6*log(-d/e + x)/(4*d**4*e**8 -
8*d**2*e**10*x**2 + 4*e**12*x**4) - 6*d**6*log(d/e + x)/(4*d**4*e**8 - 8*d**2*e**10*x**2 + 4*e**12*x**4) - 3*d
**6/(4*d**4*e**8 - 8*d**2*e**10*x**2 + 4*e**12*x**4) + 12*d**4*e**2*x**2*log(-d/e + x)/(4*d**4*e**8 - 8*d**2*e
**10*x**2 + 4*e**12*x**4) + 12*d**4*e**2*x**2*log(d/e + x)/(4*d**4*e**8 - 8*d**2*e**10*x**2 + 4*e**12*x**4) -
6*d**2*e**4*x**4*log(-d/e + x)/(4*d**4*e**8 - 8*d**2*e**10*x**2 + 4*e**12*x**4) - 6*d**2*e**4*x**4*log(d/e + x
)/(4*d**4*e**8 - 8*d**2*e**10*x**2 + 4*e**12*x**4) + 6*d**2*e**4*x**4/(4*d**4*e**8 - 8*d**2*e**10*x**2 + 4*e**
12*x**4) - 2*e**6*x**6/(4*d**4*e**8 - 8*d**2*e**10*x**2 + 4*e**12*x**4), Eq(p, -3)), (-6*d**6*log(-d/e + x)/(-
4*d**2*e**8 + 4*e**10*x**2) - 6*d**6*log(d/e + x)/(-4*d**2*e**8 + 4*e**10*x**2) - 6*d**6/(-4*d**2*e**8 + 4*e**
10*x**2) + 6*d**4*e**2*x**2*log(-d/e + x)/(-4*d**2*e**8 + 4*e**10*x**2) + 6*d**4*e**2*x**2*log(d/e + x)/(-4*d*
*2*e**8 + 4*e**10*x**2) + 3*d**2*e**4*x**4/(-4*d**2*e**8 + 4*e**10*x**2) + e**6*x**6/(-4*d**2*e**8 + 4*e**10*x
**2), Eq(p, -2)), (-d**6*log(-d/e + x)/(2*e**8) - d**6*log(d/e + x)/(2*e**8) - d**4*x**2/(2*e**6) - d**2*x**4/
(4*e**4) - x**6/(6*e**2), Eq(p, -1)), (-6*d**8*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*p**
2 + 100*e**8*p + 48*e**8) - 6*d**6*e**2*p*x**2*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*p**
2 + 100*e**8*p + 48*e**8) - 3*d**4*e**4*p**2*x**4*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*
p**2 + 100*e**8*p + 48*e**8) - 3*d**4*e**4*p*x**4*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*
p**2 + 100*e**8*p + 48*e**8) - d**2*e**6*p**3*x**6*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8
*p**2 + 100*e**8*p + 48*e**8) - 3*d**2*e**6*p**2*x**6*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e
**8*p**2 + 100*e**8*p + 48*e**8) - 2*d**2*e**6*p*x**6*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e
**8*p**2 + 100*e**8*p + 48*e**8) + e**8*p**3*x**8*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*
p**2 + 100*e**8*p + 48*e**8) + 6*e**8*p**2*x**8*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*p*
*2 + 100*e**8*p + 48*e**8) + 11*e**8*p*x**8*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*p**2 +
 100*e**8*p + 48*e**8) + 6*e**8*x**8*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*p**2 + 100*e*
*8*p + 48*e**8), True)) + d**(2*p)*e**3*x**9*hyper((9/2, -p), (11/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)/9

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (e x + d\right )}^{3}{\left (-e^{2} x^{2} + d^{2}\right )}^{p} x^{5}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(e*x+d)^3*(-e^2*x^2+d^2)^p,x, algorithm="giac")

[Out]

integrate((e*x + d)^3*(-e^2*x^2 + d^2)^p*x^5, x)